

Hydrogen (H2, R-702)

CAS: 1333-74-0	EC: 215-605-7	UN: 1049 (Compressed); 1966 (Refrigerated liquid)
Hydrogen Baseline 5.0		
Purity (%)	99,999	
Impurities (ppm) Typical Filling Pressure	O2 2 N2 5 20°C: 200 bar(a)	CnHm 0,5 H20 3
Characteristics		
 Odourless and colourl 	ess gas.	
Health Risks		
Asphyxiant at high con haemoglobin in the blo shown symptom.	ncentrations. Binds itself bod. A headache is usua	to the Illy the first
Transport		
ADR Class 2, 1 F	DOT	Class 2,1

Product Description	Size (kg)	Grade	Material Number	Valve Connection	Recommended Regulator
Hydrogen Baseline 5.0	0,74	Instrument Grade	510203-SH-C	5/8" BSP LH Int	W019120 or W019220
Hydrogen Baseline MCP	11,1	Instrument Grade	510203-MH-C	5/8" BSP LH Int	W019120 or W019220
Hydrogen N4.8	0,74	Process Grade	510101-SH-C	5/8" BSP LH Int	W019120 or W019220
Hydrogen MCP N4.8	11,1	Process Grade	510101-MH-C	5/8" BSP LH Int	W019120 or W019220

Physical Data		
Molecular Weight	2,016	
Boiling Point at 1,013 bar [°C]	-252,76	
Density at 1,013 bar, 20°C [kg/m₃]	0,084	
Vapour Pressure at 0°C [bar]	·	
Vapour Pressure at 20°C [bar]		
Flammability Range in Air [% volume]	4,0 - 74,5	
Specific Volume at 1,013 bar, 20°C [m₃/kg]	11,90	

Material Compatibility

Legend: Good | Fair Avoid

Source

Other sources are electrolysis plants, where the hydrogen

 Hydrogen is most frequently produced for on-site usage by steam reforming of natural gas. Such plants may also be used as sources of hydrogen for the merchant market.

is a by-product of chlorine production, and various waste gas recovery plants, such as at oil refineries or steel plants (coke oven gas). Hydrogen is also produced by electrolysis of water.

Applications

- High purity hydrogen finds widespread usage in the electronics industry as a reducing agent and as a carrier gas.
- High purity hydrogen is used as a carrier gas in gas chromatography.
- Hydrogen finds some usage in the welding and cutting of metals.
- Hydrogen is used in large quantities, (bulk supply or on-site generation) for the hydrogenation of vegetable and animal oils to produce margarine and other fats, hydrotreatment of petroleum products and hydrosulphuration of fuels in order to eliminate sulphur.
- Hydrogen in large quantities is used in petrochemical processes that include hydrodealkylation, hydro-desulphurisation and hydrotreatment.
- Hydrogen is used in leak testing applications.
- Hydrogen is used extensively in the metals industries because of its ability to reduce metal oxides and prevent oxidation of metals during heat treatment. It may be used either pure, as is often the case when heat treating stainless steel, or in a mixture with inert gases, argon or nitrogen. It is used in the production of carbon steels, special metals and semiconductors.
- Hydrogen is used for combustion;
 - In industry, it is used to supply oxygen-hydrogen torches for glass working (quartz, Pyrex_®, etc.), in the fabrication of artificial precious stones (ruby, etc.) and for underwater oxy-cutting
 - In the laboratory, it is used in analyser flames, reducing flame photometry detection instruments, flame ionisation detection instruments and fuel cells.
- Extremely pure hydrogen is used in the chemical industry for fine reduction processes.
- Liquefied hydrogen is used as a rocket fuel. In the laboratory, liquid hydrogen is employed for solid physics research.

Gases

- In the nuclear industry, para-hydrogen is employed to fill bubble chambers.
- In electrical power plants, hydrogen is used as a coolant gas in turbogenerators.
- Hydrogen is used for synthesis of ammonia.
- Hydrogen is used as a reagent to produce high purity water.
- Hydrogen is used as fuel in fuel cell applications.